https://www.nmb-journal.com

Nano Micro Biosystems

Online ISSN: 2980-8057

Self-assembled nanostructures for anticancer applications: Advances and limitations

Mehran Alavi^{1,2*}and Ermia Aghaie³

ABSTRACT

¹Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
²Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
³High Performance Powertrain Materials Laboratory, School of Engineering, University of British Columbia – Okanagan, Kelowna, VIV
1V7, Canada

ARTICLE INFO

Review paper

Article history: Received: 20 Oct 2022 Revised: 22 Nov 2022 Accepted: 24 Nov 2022 ePublished: 25 Nov 2022

Keywords:

High loading efficiency, Noncovalent interactions, Passive and active targeting, Ordered nanostructures, Reversible organization, Self-assembled nanocarriers

DOI: https://doi.org/10.22034/nmbj.2022.161602

1.Introduction

Severe side effects and multidrug resistance (MDR), mainly caused by overexpression of drug efflux, are two main disadvantages of chemotherapy by conventional drugs [1]. In recent years, nanoformulations of anticancer agents have obtained progress owing to their unique enormous physicochemical properties compared to bulk ones [2-5]. Molecular units can form self-assembled micro and nanostructures under specific conditions nan-covalent interactions (hydrogen bv and electrostatic bonds) [6-8]. Generally, van der Waals interactions, electrostatic interactions and electric double layer, hydrophobic interactions, hydrogen bonding, and aromatic π - π stacking are the main forces for micro and nanoformulations of micelles, fibrillar networks or hydrogels, and vesicles [9]. In the case of the self-assembled nanostructures, entropy has a key role during the process of selfassembly via minimization of the free energy owing to an augment in the entropy, entropy maximization

Self-assembled nanostructures can be created as the spontaneous organization of individual nanomaterials via entropy maximization (under suitable conditions) into ordered nanostructures by noncovalent interactions such as van der Waals and hydrophobic interactions. Nucleic acids, amino acids, and lipids are the main building blocks to producing natural self-aasembled nanostructures. For selfassembled nanocarriers as reversible organization, several advantages have been found including biocompatibility, biochemical diversity, and high loading efficiency for both hydrophilic and hydrophobic therapeutic agents, and ability to passive and active targeting. In the case of cancers, these benefits can improve formulations due to inactivation or eradication of various cancer cells. However, there are some limitations such as low stability in the physiological conditions for these formulations, which we have tried to address these issues.

Copyright: © 2022 by NMB.

[10]. In bottom-up approaches, colloidal particles are assembled individually or "digitally" [11]. Using template agents can promote multicomponent selfassembly by both nan-covalent and covalent bonds [12]. There is a direct relationship between disorder and entropy value in a medium which can be controlled by physical, chemical, and biological templates. Silica membranes, metal/metal oxide nanoparticles, and nucleic acids can be used as physical, chemical, and biological templates, respectively [13]. In addition, the self-assembly process can be induced by exotic energies caused by light, laser, Brownian/hydrodynamic forces, and magnetic/electric fields [14]. Drug delivery systems prepared from synthetic/natural polymers, lipids, DNA, and small peptides have opened up new avenues for treating various diseases, specifically cancers (Table 1)[15, 16]. Low stability is the significant limitation of self-assembled nanocarriers in physiologicsl conditions, which may be improved using various organic or inorganic stabilizers such as polyethylene glycol succinate, polyvinyl alcohol,

polyvinyl pyrrolidone, carboxymethylcellulose sodium, and sodium lauryl sulfate [17].

Table 1. Physicochemical properties and anticancer activity of drug delivery systems composed of synthetic/natural polymers, lipids, DNA, and small pentides

peptides.	<u> </u>	
Self-assembled	Anticancer activity	Ref.
nanostructures		
Complex of self-	Less toxicity to	[18]
assembled	HepG2 cells	
polyethylenimine-graft-	compared to blank	
poly(ε-caprolactone)	micelles and	
micelles and a reporter	improved gene	
gene (pCMV-Luc)	transfection	
loading doxorubicin	efficiency by	
(DOX) prepared via	combined gene and	
coupling poly(e-	drug therapy	
caprolactone) to	synergistic effects	_
branched	synergistic enreets.	
polyethylenimine by an		
amida group		
Subarial aslf accombled	A.,	[10]
Spherical self-assembled	An encapsulation	[19]
nanoparticles composed	efficiency of 52.6%,	
of oleoyl-chitosan with a	sustained release at	
mean diameter of 255.3	pH 7.4, and rapid	
nm loading DOX	release at pH 3.8,	
	The inhibitory rates	
	of nanoformulation	
	against several	
	human cancer cells,	
	including SGC-	
	7901, Bel-7402,	
	A549, and HeLa,	-
	significantly better	
	than DOX solution.	
Self-assembled glycol	Lower toxicity with	[20]
chitosan bearing	antitumor activity	
fluorescein	compared to free	_
isothiocvanate and	doxorubicin: after	
doxorubicin	intravenous	
	injection the	
	concentration of	
	self-assembled	
	nanostructure was	
	higher than 8%	
	avan at three days	
Calf accombled	Sustained days.	[21]
Sent-assembled	Sustained drug and	[21]
mesoporous and	gene delivery were	
spnericai submicron-	observed for these	
sized capsules	nanotormulations,	
(dandelions) of ZnO	~88% of DOX	

nanoparticles and	molecules and		
nanorods loading DOX,	~78% of		
the fluorescent	Rhodamine 6G over		
molecules (Rhodamine	a period of 12 h.		
6G), DOX), and DNA	L		
L-DNA (a mirror form	Similar	[22]	
of natural d-DNA)	thermodynamic		
,	properties compared		
	to d-DNA, while		
	having enhanced		
	serum stability,		
	augmented cellular		
	and tissue		
	penetration in rumor		
	and higher		
	anticancer activity		
	than to PEGylated		
	liposomes.		
Doxorubicin (Dox)-	Drug-loading	[1]	
binding multifunctional	capacity of 71.4%,		
DNA nanoflowers (NFs)	wt/wt, stable at		
with a mean diameter of	physiological pH,		
~200 nm	drug release under		
	acidic or basic		
	conditions,		
	decreasing side		
	effects, inhibition of		
	drug efflux, and		
	increasing drug		
	retention in MDR		
	cells in the breast		
	cancer cell and		
	leukemia models.		
Floxuridine-integrated	Reduction in tumor	[23]	
DNA polyhedral as	volume related to		
DNA	HeLa cells and side		
Trojan Horses	effects of		
	floxuridine		
Incorporation of	Greater drug	[24]	
aptamers,	loading capacity,		
fluorophoresm, and	suitable biostability,		
doxorubicin into the	biocompatibility,		
multifunctional DNA	significant		
dendrimer prepared by	selectivity, binding		
functional Y-shaped	affinity, and		
building blocks (Figure	appropriate cell		
1a)	internalization		
	efficiency.		
Self-assembled DNA	Prominent reduction	[25]	
nanotube bearing	in both miRNA		
multiple DNA sequences	levels followed by		
(hairpin, single-stranded,	inhibition of cancer		

and duplex forms)	cell growth.	(Polyethylene glycol)	uptake followed by
complementary to a		PEG-folate nanoparticles	its distribution into
target oncogenic miRNA			nuclei.
(miR-21 in MCF-7		Four-armed amphiphilic	Significant [27]
breast cancer cells and		copolymer, Pt-PAZMB-	antitumor efficiency
miR-155 in NSCLC		b-POEGMA, containing	with low systemic
(non-small-cell lung		a metallacycle,	toxicity resulted
cancer) cells (Figure 1b)		fluorescent probe, and	from controlled
Mitomycin C-	Augmented tumor [26]	anticancer drugs of the	drug release,
phospholipid complex-	accumulation of	3,6-bis[trans-	enhanced
loaded DSPE (1, 2-	mitomycin C in	Pt(PEt3)2]phenanthrene	permeability, and
Distearoyl-sn-glycero-3-	HeLa tumor-bearing	and DOX	retention effect.
phosphoethanolamine)-	nude mice cellular	-	

Continuation of Table 1

Fig. 1. a) Incorporating aptamers, fluorophoresm, and doxorubicin into the multifunctional DNA dendrimer prepared by functional Y-shaped building blocks and b) Self-assembled DNA nanotube bearing multiple DNA sequences [24, 25].

2. Conclusions

Biocompatibility and targeting of anticancer drugs with low side effects are two main objectives for new promising formulations. In this case, nanotechnology has presented new nanoformulations composed of synthetic/natural polymers, lipids, DNA, and small peptides based on self-assembly feature. Self-assembled nanostructures can be generated as the spontaneous organization of individual nanomaterials via entropy maximization into ordered nanostructures. There are several advantages for self-assembled nanocarriers involving biocompatibility, biochemical diversity, ability to

passive and active targeting, and high loading efficiency for both hydrophilic and hydrophobic therapeutic agents. However, low stability is still the limitation of these formulations major in physiological conditions, which can be modified by organic or inorganic stabilizers specifically polymers such as polyvinyl alcohol, polyethylene glycol succinate, polyvinyl pyrrolidone, and carboxymethylcellulose sodium.

Study Highlights

• Targeting of anticancer drugs with low side effects is the critical factor for new effective formulations.

- Self-assembled nanostructures can be obtained as the spontaneous organization of individual nanomaterials via entropy maximization into ordered nanostructures.
- There are several benefits for self-assembled nanocarriers involving biocompatibility, biochemical diversity, ability to passive and active targeting, and high loading efficiency for both hydrophilic and hydrophobic therapeutic agents.
- Low stability is the major limitation of these formulations in physiological conditions, which can be modified by organic or inorganic stabilizers specifically polymers such as polyvinyl alcohol, polyethylene glycol succinate, polyvinyl pyrrolidone, and carboxymethylcellulose sodium.

Abbreviations

MDR: Multidrug resistance DOX: Doxorubicin DSPE:1,2-Distearoyl-sn-glycero-3phosphoethanolamine PEG: Polyethylene glycol NSCLC: Non-small-cell lung cancer

Funding

This work was not supported by any institutes.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Authors' contribution

Both authors: conceptualization, preparing the first drafting, and revising the manuscript.

Acknowledgment

None.

References

1.Mei L, Zhu G, Qiu L, Wu C, Chen H, Liang H, et al. Self-assembled multifunctional DNA nanoflowers for

Nano Micro Biosystems

the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Research. 2015;8(11):3447-60.

doi:https://doi.org/10.1007/s12274-015-0841-8

2.Alavi M, Webster TJ, Li L. Theranostic safe quantum dots for anticancer and bioimaging applications. Micro Nano Bio Aspects. 2022;1(2):1-11 3.Alavi M, Martinez F, Delgado DR, Tinjacá DA. Anticancer and antibacterial activities of embelin: Micro and nano aspects. Micro Nano Bio Aspects. 2022;1(1):30-7

4.Alavi M, Rai M, Varma RS, Hamidi M, Mozafari MR. Conventional and novel methods for the preparation of micro and nanoliposomes. Micro Nano Bio Aspects. 2022;1(1):18-29

5.Alavi M, Kowalski R, Capasso R, Douglas Melo Coutinho H, Rose Alencar de Menezes I. Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells. Micro Nano Bio Aspects. 2022;1(1):38-48

6.Habibi N, Kamaly N, Memic A, Shafiee H. Selfassembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today. 2016;11(1):41-60.

doi:https://doi.org/10.1016/j.nantod.2016.02.004

7.Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM. Directed Self-Assembly of Nanoparticles. ACS Nano. 2010;4(7):3591-605. doi:<u>https://doi.org/10.1021/nn100869j</u>

8.Dhotel A, Chen Z, Delbreilh L, Youssef B, Saiter JM, Tan L. Molecular motions in functional selfassembled nanostructures. International Journal of Molecular Sciences. 2013;14(2):2303-33. doi:<u>https://doi.org/10.3390/ijms14022303</u>

9.Yadav S, Sharma AK, Kumar P. Nanoscale Self-Assembly for Therapeutic Delivery. Frontiers in Bioengineering and Biotechnology. 2020;8. doi:<u>https://doi.org/10.3389/fbioe.2020.00127</u>

10.Rocha BC, Paul S, Vashisth H. Role of Entropy in Colloidal Self-Assembly. Entropy. 2020;22(8):877. doi:<u>https://doi.org/10.3390/e22080877</u>

11.Kotnala A, Zheng Y. Digital Assembly of Colloidal Particles for Nanoscale Manufacturing. Particle & Particle Systems Characterization. 2019;36(8):1900152.

doi:https://doi.org/10.1002/ppsc.201900152

12.Yang Y-D, Chen X-L, Sessler JL, Gong H-Y. Emergent Self-Assembly of a Multicomponent Capsule via Iodine Capture. Journal of the American Chemical Society. 2021;143(5):2315-24. doi:<u>https://doi.org/10.1021/jacs.0c11838</u>

13. Alavi M, Thomas S, Sreedharan M. Modification of silica nanoparticles for antibacterial activities: mechanism of action. Micro Nano Bio Aspects.

2022;1(1):49-58

14.Pashchanka M. Conceptual Progress for Explaining and Predicting Self-Organization on Anodized Aluminum Surfaces. Nanomaterials. 2021;11(9):2271.

doi:https://doi.org/10.3390/nano11092271

15.Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, et al. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol. 2022;12:867655.

doi:https://doi.org/10.3389/fonc.2022.867655

16.Alavi M, Mozafari MR, Hamblin MR, Hamidi M, Hajimolaali M, Katouzian I. Industrial-scale methods for the manufacture of liposomes and nanoliposomes: pharmaceutical, cosmetic, and nutraceutical aspects. Micro Nano Bio Aspects. 2022;1(2):26-35

17.Rachmawati H, Shaal LA, Müller RH, Keck CM. Development of Curcumin Nanocrystal: Physical Aspects. Journal of Pharmaceutical Sciences. 2013;102(1):204-14.

doi:https://doi.org/10.1002/jps.23335

18.Qiu LY, Bae YH. Self-assembled polyethylenimine-graft-poly(*\varepsilon*-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Biomaterials. 2007;28(28):4132-42. doi:https://doi.org/10.1016/j.biomaterials.2007.05.035 19. Zhang J, Chen XG, Li YY, Liu CS. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine: Medicine. Nanotechnology, Biology and 2007;3(4):258-65.

doi:https://doi.org/10.1016/j.nano.2007.08.002

20.Hyung Park J, Kwon S, Lee M, Chung H, Kim J-H, Kim Y-S, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: In vivo biodistribution and anti-tumor activity. Biomaterials. 2006;27(1):119-26. doi:<u>https://doi.org/10.1016/j.biomaterials.2005.05.028</u> 21.Kumar VB, Kumar K, Gedanken A, Paik P. Facile synthesis of self-assembled spherical and mesoporous dandelion capsules of ZnO: efficient carrier for DNA and anti-cancer drugs. Journal of Materials Chemistry B. 2014;2(25):3956-64.

doi:https://doi.org/10.1039/C4TB00416G

22.Kim K-R, Kim HY, Lee Y-D, Ha JS, Kang JH, Jeong H, et al. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. Journal of Controlled Release. 2016;243:121-31.

doi:https://doi.org/10.1016/j.jconrel.2016.10.015

23.Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, et al. DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA Polyhedra for Cancer Therapy. Angewandte Chemie. 2017;129(41):12702-6. doi:

https://doi.org/10.1002/ange.201706301

24.Zhang H, Ma Y, Xie Y, An Y, Huang Y, Zhu Z, et al. A Controllable Aptamer-Based Self-Assembled DNA Dendrimer for High Affinity Targeting, Bioimaging and Drug Delivery. Scientific Reports. 2015;5(1):10099.

doi:https://doi.org/10.1038/srep10099

25.Liu Q, Wang D, Yuan M, He BF, Li J, Mao C, et al. Capturing intracellular oncogenic microRNAs with self-assembled DNA nanostructures for microRNAbased cancer therapy. Chemical Science. 2018;9(38):7562-8.

doi:https://doi.org/10.1039/C8SC03039A

26.Li Y, Lin J, Yang X, Li Y, Wu S, Huang Y, et al. Self-Assembled Nanoparticles Based on Amphiphilic Anticancer Drug–Phospholipid Complex for Targeted Drug Delivery and Intracellular Dual-Controlled Release. ACS Applied Materials & Interfaces. 2015;7(32):17573-81.

doi:<u>https://doi.org/10.1021/acsami.5b05038</u>

27.Yu G, Zhang M, Saha ML, Mao Z, Chen J, Yao Y, et al. Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. Journal of the American Chemical Society. 2017;139(44):15940-9. doi:https://doi.org/10.1021/jacs.7b09224

HOW TO CITE THIS ARTICLE:

Alavi M, Aghaie E. Self-assembled nanostructures for anticancer applications: Advances and limitations. Nano Micro Biosystems. 2022;1(1):27-31. doi: <u>https://doi.org/10.22034/nmbj.2022.161602</u>

CHECK FOR UPDATES