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ABSTRACT 
 

Severe side effects of chemotherapeutic and anti-diabetic drugs for cancer cells and type 2 diabetes 

(T2D) type and emerging drug resistance in pathogenic microorganisms, specifically bacteria, are the 

main barriers to achieving desired therapeutic results. Various antimicrobial and anticancer functions 

involve damaging cell membranes by direct contact with metal or metal oxide nanoparticles (NPs), 

inhibition of biofilm, formation of free radicals and nonradicals of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS), inducing host immune responses, and denaturation biological 

macromolecules such as nucleic acids and protein have been found for metal or metal oxide NPs. The 

major one is the production of ROS, including peroxides (*O2
−2), superoxide (*O2

−), hydroperoxyl 

(HO2
*), hydroxyl radical (HO*), and singlet oxygen (1O2

*), as well as RNS such as peroxynitrite 

(ONOO−) and nitric oxide (NO*) under the oxidative stress via release of metal ions from NPs. 

Oxidative stress can result from the elevation of ROS more than the buffering capacity. ROS and RNS 

can cause lipid peroxidation, oxidative protein carbonylation, and inactivation of specific enzymes. This 

review shows that controlling the dose of ROS and specific targeting is for achieving promising 

anticancer and antimicrobial results in physiological conditions. 

 

DOI: https://doi.org/10.22034/nmbj.2023.382133.1012                                                          Copyright: © 2023 by NMB.  

1. Introduction 

Nanotechnology has driven significant advances in 

medicine resulting from favorable biocompatibility, 

pharmacological, intrinsic targeting properties, and 

optimal physicochemical properties of nanomaterials 

(NMs). Drug resistance in microorganisms and 

tumor cells is an emerging problem in treating 

microbial infections, specifically septicemia and 

diabetic foot ulcers, and various metastatic cancers. 

Silver (Ag and Ag2O), copper (Cu, CuO, and Cu2O), 

zinc oxide (ZnO), titanium dioxide (TiO2), platinum 

(Pt), iron oxides (Fe3O4 and Fe2O3), magnesium 

dioxide (MgO), cerium oxide (CeO2), ZnFe2O4, and 

ZnO/ZnFe2O4 may be employed as bare or 

functionalized NPs for inactivating or eradicating of 

pathogenic microorganisms and cancer cells [1-4]. 

Several anticancer and antimicrobial mechanisms, 

including damaging cell membranes by direct 

contact with NPs, inhibition, and disruption of 

biofilm, formation of free radicals and nonradicals of 

reactive oxygen species (ROS) and reactive nitrogen 

species (RNS), inducing host immune responses, and 

denaturation biological macromolecules such as 

nucleic acids and protein have been found for metal 

or metal oxide NPs [5, 6]. The major one is the 

production of ROS, including peroxides (
*
O2

−2
), 

superoxide (
*
O2

−
), hydroperoxyl (HO2

*
), hydroxyl 

radical (HO
*
), and singlet oxygen (

1
O2

*
), as well as 

RNS such as peroxynitrite (ONOO
−
) and nitric oxide 

(NO
*
) under the oxidative stress via release of metal 

ions from NPs. Photodynamic therapy (PDT), 

chemodynamic therapy (CDT), and sonodynamic 

therapy (SDT) can induce ROS accumulation in cells 

by ROS-generating NPs [7]. PDT is the standard 

method for producing ROS using biocompatible 

photosensitizers under a specific wavelength. Metal 

and metal oxide NPs can induce ROS bursts by 

impairing mitochondrial respiration [8]. For 

example, mixing into redox cycling and 

chemocatalysis through the Fenton reaction [H2O2 + 
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Fe
2+

 → Fe
3+

 + HO
−
 + •OH] or Fenton-like reaction 

[Ag
+
 H2O2+H

+
 = Ag

+
 + •OH + H2O] can be caused 

by ions released from these NPs [9]. As an 

intelligent strategy, metal and metal oxide NPs have 

been modified by photosensitizers to increase ROS 

generation. ROS and RNS can lead to protein 

carbonylation, inactivation of specific enzymes, and 

lipid peroxidation (Figure 1a). The interaction of 

ROS and RNS is presented in Figure (Figure 1b) 

[10]. It should be regarded that normal amounts of 

ROS are generated as a response to the normal 

metabolisms of oxygen in the body [11]. However, 

increasing ROS in high concentrations can cause 

apoptosis and cell death. Therefore, controlling the 

ROS and RNS in cells is critical to cell survival.  

Cell survival and cell death are affected by these free 

radicals or nonradicals such as H2O2 [12]. For some 

metal oxide NPs specifically ZnONPs, the 

generation of ROS can be accelerated under visible 

light and ultraviolet (Figure1c ) [13]. Several genes 

related to oxidant stress, such as the NADPH 

production-related gene (met9), oxidative stress-

related genes (ahpC, soxS, oxyR, and soxR,), and 

antioxidant genes (gpx 1 and sod1). In the case of 

cancer cells, targeting the tumor cells by 

functionalized metal or metal oxide NPs is vital to 

obtain effective results with low cytotoxicity towards 

healthy cells [14]. In this regard, antibodies, natural 

metabolites (polyphenolic compounds, flavonoids, 

terpenoids, and alkaloids), and polymers such as 

cellulose, chitosan, and pectin associated with 

medicinal plants, lichens, and bacteria have been 

used to increase the efficiency of cancer targeting 

[15, 16]. As an essential antioxidant activity, these 

bioactive agents can alleviate oxidant effects from 

higher ROS and RNS concentrations (Figure 2). 

Therefore, these compounds' surface modification of 

metal or metal oxide NPs can be the alternative 

option to obtaining biocompatible or biodegradable 

metallic nanoformulations. Moreover, the 

genotoxicity of metallic NPs may be augmented by 

reducing the size followed by increasing ROS 

generation. Additionally, determining the highest 

effective doses is a critical factor in obtaining 

positive outcomes. In this review, we have tried to 

cover recent progress and hindrances for novel 

nanoformulations of metal or metal oxide NPs 

focusing on ROS and RNS production.  

 

 

 

 

 
Fig. 1. a) biological mechanisms for ROS [12], b) 

interaction between ROS and RNS [10], and c) 

antibacterial activity of ZnONPs by the production of 

ROS under visible light and ultraviolet [13].   
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Fig. 2. Several types of NPs can induce ROS burst in 

different doses. (Nano-C60: fullerene C60 nanocrystal; 

VO2: Vanadium dioxide; Co-ZnO: Cobalt doped ZnONPs; 

Ag/lyz-Mt: Ag/lysozyme NPs supported with 

montmorillonite clay; CdS NPs: Cadmium sulfide NPs; 

bsCdS: biosurfactant stabilized CdS quantum dots; 

PATA-C4@CuS: poly(5-(2-ethyl acrylate)-4-methyl 

thiazole-g-butyl)/copper sulfide nanoclusters)[17-32]. 

 

2. Anticancer activity 

Chemotherapy, radiotherapy, and surgery are the 

three main strategies of cancer therapy. As 

mentioned in the introduction, these methods have 

their imitations, which can cause severe side effects 

in patients, specifically in the metastasis stage [33]. 

It is worth noting that biological functions, including 

DNA mutagenesis, gene transcription activation, and 

protein activation or inhibition can be regulated via 

intracellular low ROS levels [34]. Indeed, cells use 

the ROS scavenging system to prepare ROS 

homeostasis at physiological levels  [35]. In contrast, 

several severe diseases, including cancer, diabetes, 

cardiovascular diseases, inflammation, and 

neurodegenerative diseases, may be caused by high 

ROS levels [36]. ROS accumulation in suitable 

concentration leads to disturbing cellular redox 

balance of tumor cells [37]. A high dose of ROS can 

lead to apoptosis, autophagy, necrosis, and 

ferroptosis in cancer cells [38]. In addition, ROS 

production may synergize radiation therapy in some 

cancer types. CeO2 NP-induced ROS production can 

be increased under radiation in pancreatic cancer 

cells by inducing apoptotic pathways [39]. Lung 

cancer, dominant cancer with a frequency of 30% in 

women and 50% in men, leads to high mortality. 

Herbal synthesized spherical AgNPs (a size range of 

10-100 nm sizes) by aqueous extract of Avicennia 

marina exhibited 15% and 94% inhibition at 

10 µg/mL and 80 µg/mL concentrations, respectively 

[40]. By the oxidation process, the AgNPs can 

generate the ROS in A549 cancer cells with 

accumulation on the DNA granules followed by 

blocking the DNA transferring ability and the 

polymerase enzyme production. Extracellular and 

intracellular production of ROS by metal ions and 

electrons resulting from metallic NPs can damage 

the cellular membrane and biological 

macromolecules of cancer cells [41]. A combination 

of metal and metal oxide elements to prepare NPs 

may lead to a novel catalyst suitable for generating 

more ROS in tumor cells by PDT (direct electron 

transfer) and CDT (the Fenton reaction). ZnFe2O4 

NPs, as a semiconductor photocatalyst, can produce 

ROS under tumor H2O2 and ultraviolet (UV) and 

near-infrared (NIR) light [42].  

 

3. Antimicrobial activity 

There are various biological compounds, such as 

polysaccharides related to plants (starch, cellulose, 

and glucomannan), algae (carrageenans, galactans, 

and alginates), animals (chitin, chitosan, and 

hyaluronic acid), and bacteria (cellulose, 

polygalactosamine, gellan, dextran, levan, and 

xanthan), and fungi (glucan, galactomannans, and 

chitin and) with the therapeutic application in 

nanoformulation. In addition to stabilizing 

nanomaterials, these polysaccharides in 

nanoformulation can increase antimicrobial and 

induce cytokine release and receptor expression [43]. 

For example, conjugating fungal glucan isolated 

from Pleurotus florida with AgNPs exhibited 

prominent bactericidal activity against MDR 

Klebsiella pneumonia by generating ROS and 

damaging bacterial macromolecules [44]. 

ZnO/ZnFe2O4 NPs can generate ROS in bacterial 

cells and kill bacteria by related mechanisms [45]. 

Desirable hemocompatibility and cytocompatibility 

are critical to obtaining effective antimicrobial 

agents for wound healing. ZnFe2O4 NPs with low 

cytotoxicity against red blood cells up to a dose of 

1000 µg/mL exhibited an antibacterial effect on E. 
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coli and S. aureus at 100 µg/mL concentration. The 

main antibacterial mechanisms of ROS production, 

cell membrane damage, and protein leakage have 

been found for these NPs. This study showed that 

ROS generation in NP-treated E. coli was  2.5 times 

higher than in H2O2-treated E. coli and 5 times 

higher than in the untreated groups [46]. Oxidase and 

superoxide dismutase (SOD) mimic activities toward 

E. coli were identified for poly(ethylene glycol) 

(PEG)-coated CeO2 NPs as the antibacterial 

mechanisms of clumped bacteria and damaged the 

cell wall [47].  

 

4. Anti-diabetic activity 

A combination of genetic factors and lifestyle can 

lead to T2D disease. Insulin injection and metformin 

drugs are effective therapies for obtaining and 

maintaining adequate glycemic control in T2D [48]. 

Common side effects of anti-diabetic drugs include 

oral hypoglycemia, gastric distress, increased serum 

lipase, headache, hypoglycemia, flatulence, 

abdominal pain, increased serum transaminases, 

urinary tract infection, diarrhea, and nausea [49]. 

Oxidative stress, as one of the initial factors in T2D 

onset and progression, can cause hyperglycemia-

triggered tissue damage [50]. The excessive 

production of ROS is the most common side effect 

of MNPs or MONPs, which can lead to NP-induced 

toxicity [51]. Therefore, ROS modulation is an 

indispensable factor in getting suitable therapeutic 

results. In the case of type 2 diabetes (T2D), the 

ROS effect is dependent on the amount of NPs, 

wherein exposure to high NP doses promotes more 

ROS formation, and exposure to low doses leads to 

upgrading the endogenous antioxidant defense 

system against damaging results from oxidative 

stress such as inflammation and cytotoxicity. 

Moreover, different types of NPs can modulate 

antioxidant activity in other pathways (Figure 3)[52]. 

The antioxidant effect of NPs may be caused by 

electronic configuration, catalytic properties, high 

surface-to-volume ratio, and oxygen vacancy defects 

[53]. For example, in the case of CeO2 NPs, the 

presence of oxygen vacancies on the surface of NPs 

is the prominent reason for their antioxidant activity 

[54]. Dual oxidation states of CeO2 NPs (Ce
3+

 and 

Ce
4+

) provide them with antioxidative behavior. The 

Ce
3+

/Ce
4+

 ratio on the surface of these NPs can 

determine their cytotoxicity, wherein a higher 

amount of Ce
3+

 (>30%) is responsible for the 

cytotoxicity [47]. As the main anti-diabetic 

mechanisms, the down-regulating mitogen-activated 

protein kinase (MAPK) pathway and activating 

protein kinase B (AKT) pathway were identified for 

curcumin NPs and ZnONPs [55]. In another study, 

brain dysfunction and neuronal damage in male 

albino rats with diabetes mellitus were attenuated 

under the therapeutic effect of AuNPs in the high 

dose of 2 mg/kg body weight compared to the lower 

dose (1 mg/kg body weight) [56]. In a similar study, 

green synthesized AgNPs by Thymus serpyllum 

aqueous extract (spherical shape by a mean size of 

42 nm) at 10 mg/kg showed a prominent augment in 

the expression of adenosine monophosphate-

activated protein kinase (AMPK) and insulin 

receptor substrate-1 (IRS1), and subsequently 

increasing the glucose uptake in diabetic BALB/c 

mice [57].  

 

 

  

Fig. 3. NPs inhibit diabetes-induced oxidative stress in 

affecting different steps  (GPx: Glutathione peroxidase; 

GR: Glutathione reductase; GSH: oxidized glutathione; 

SOD: Superoxide dismutase; CAT: Catalase; NADP: 

Nicotinamide adenine dinucleotide phosphate; NADPH: 

Reduced nicotinamide adenine dinucleotide phosphate; 

GPGL: 6-phosphogluconolactonase; G6PDH: Glucose-6-

phosphate dehydrogenase; G6P: Glucose-6-phosphate) 

[52]. 
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5. Antineurodegenerative activity 

ROS can perform a significant role in the progress of 

neurodegenerative diseases such as multiple system 

atrophy, Alzheimer's disease (AD), amyotrophic 

lateral sclerosis (ALS), multiple sclerosis (MS), 

Huntington's disease (HD), and Parkinson's disease 

(PD) [58]. In the case of AD, misfolding and 

aggregates of amyloid β (Aβ) are considered 

prominent targets for reducing manifestations of the 

disease. This process, amyloid aggregation by Aβ-

metal complex, is modulated by metal ions such as 

Cu
2+

 and Zn
2+

 as a significant contributing factor in 

neurotoxicity [59]. Therefore, disrupting these 

complexes may be a therapeutic strategy for AD 

therapy. Modification surface of selenium 

(Se)/ruthenium (Ru) NPs by L-Cys as a reducing 

agent was applied to hinder aggregations of metal-

induced Aβ. These NPs showed significant affinity 

against Aβ species, inhibition of Zn
2+

–Aβ40 mediated 

production of ROS, intracellular Aβ40 fibrillization, 

and neurotoxicity in PC12 cells. Se/Ru NPs 

compared to SeNPs exhibited significant increasing 

in the binding activity to Aβ40 [60]. In contrast to 

ZnONP and Fe2O3NP, CuONPs at a concentration of 

100 μM for 48 h incubation displayed increased Aβ 

levels and neuronal cell apoptosis in H4 and SH-

SY5Y cells. Treatment by CuONPs showed 90% 

growth inhibition of H4 and PC12 cells after a period 

of 48 h. In addition, caspase 3 activity levels were 

increased by these NPs as values of 355%, 210%, 

and 150%, PC12, H4, and SH-SY5Y cell lines, 

respectively [61].  

 

6. Conclusions  

High costs, drug resistance, low response rates, and 

toxicity have been found as the main drawbacks of 

traditional cancer therapies such as chemotherapy, 

radiotherapy, immunotherapy, and surgical 

operation. For microbial infections, drug resistance 

and side effects are the significant disadvantages. 

The discovery and improvement of novel 

antimicrobial and anticancer drugs against MDR 

cancer and bacteria are facing significant challenges 

due to toxicity, severe side effects, and the high cost 

of conventional antibiotics and anticancer drugs. 

Therefore, there is an emerging necessity to present 

bio-compatible and cost-effective therapeutic agents. 

Various antimicrobial and anticancer mechanisms 

involve disrupting cell membrane or cell wall by 

direct contact with NPs, inhibiting and damaging 

biofilm integrity, formation of free radicals and 

nonradicals of ROS and RNS, inducing host immune 

responses, and denaturation of biological 

macromolecules such as nucleic acids and protein 

have been found for metal or metal oxide NPs. In the 

case of antibacterial activity, NP-treated E. coli 

exhibited ROS generation by 2.5 times higher than 

H2O2-treated E. coli and 5 times more than the 

untreated bacteria. The oxidative stress resulting 

from ROS and RNS can down-regulate the process 

in apoptotic genes and cause programmed cell death 

due to intracellular leakages in the mitochondrial 

membrane. However, several diseases, such as 

cancer, diabetes, cardiovascular diseases, 

inflammation, and neurodegenerative diseases, may 

be caused by high ROS levels. In another way, 

moderate ROS levels and massive accumulation of 

ROS induce tumorigenesis and cell death by 

apoptosis, autophagy, necrosis, and ferroptosis 

pathway, respectively. In the case of T2D, exposure 

to low concentrations of NPs leads to the 

endogenous antioxidant defense system against 

damaging results from oxidative stress by 

modulating antioxidant activity in different 

pathways. Down-regulating MAPK pathway and 

activating AKT pathway were found for curcumin 

NPs and ZnONPs as the main anti-diabetic 

mechanisms of organic and inorganic NPs. ROS 

production by metal and metal oxide NPs represents 

a double-edged sword in diseases therapy. In the 

case of neurodegenerative diseases, specifically AD, 

exposure to CuONPs may be a risk factor by 

increasing Aβ peptide in patients. Totally, 

controlling the level of ROS and specific targeting 

with low cytotoxicity are the critical factor for 

achieving desirable anticancer and antimicrobial 

results in physiological conditions.  

 

Study Highlights 

 ROS production by metal and metal oxide NPs 

represents a double-edged sword in diseases 

therapy. 

 Disrupting cell membrane or cell wall by direct 

contact with NPs, inhibiting and damaging 

biofilm integrity, formation of free radicals and 

nonradicals of ROS and RNS, inducing host 
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immune responses, and denaturation of 

biological macromolecules such as nucleic acids 

and protein have been found for metal or metal 

oxide NPs.  

 NP-treated E. coli exhibited ROS generation by 

2.5 times higher than H2O2-treated E. coli and 5 

times more than the untreated bacteria. 

 The oxidative stress resulting from ROS and 

RNS can down-regulate the process in apoptotic 

genes and cause programmed cell death due to 

intracellular leakages in the mitochondrial 

membrane.  

 Moderate ROS levels and massive accumulation 

of ROS induce tumorigenesis and cell death by 

apoptosis, autophagy, necrosis, and ferroptosis 

pathway, respectively. 
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