Nano Micro Biosystems

https://www.nmb-journal.com

Online ISSN: 2980-8057

Molecular docking of neohesperidin dihydrochalcone with the main components of SARS-CoV-2

Qassim Hassan Aubais Aljelehawy

Department of Chemistry, College of Education, University of Al-Qadisiyah, Iraq

ARTICLE INFO

ABSTRACT

Original paper

Article history: Received: 29 July 2023 Revised: 22 Aug 2023 Accepted: 23 Aug 2023 ePublished: 24 Aug 2023

Keywords:

COVID-19, Main proteases, Papain-like protease, RNAdependent RNA polymerase, Helicase, CB-Dock, Vina score

DOI: https://doi.org/10.22034/nmbj.2023.409151.1023

1.Introduction

Flavonoid metabolites are phytochemical compounds having potential medicinal applications including antibacterial, antiviral, antifungal, antiinflammatory, anticancer, and antioxidant activities [1]. Neohesperidin dihydrochalcone ($C_{28}H_{36}O_{15}$ with a molar mass of 612.58 g/mol) is an artificial sweetener (a sugar substitute providing sweetness with low-calorie or zero-calorie) isolated from citrus [2]. This hydrogenated flavonoid derivative has significant antioxidant activity [3]. This artificial sweetener in contrast to aspartame is stable to basic or acidic conditions and elevated temperatures. Antibacterial, antifungal, and anti-inflammatory activities of this compound have been reported previously [4-6]. Drug repurposing approaches can be employed for the therapy of viral infections based on reviving conventional antiviral drugs [7]. There are about 61 direct-acting antiviral agents (DAA) in clinical trials and many of these drugs have been screened and evaluated by molecular docking studies after the emergence of coronavirus disease 2019 (COVID-19) [8, 9]. In addition, presenting novel

*Corresponding author. E-mail: qassim.hassan@qu.edu.iq Nano Micro Biosystems, 2023, 2(2): 10-17

Neohesperidin dihydrochalcone is an artificial sweetener with remarkable antioxidant activity, stable to basic or acidic conditions and elevated temperatures. This bioactive compound has demonstrated antiviral, antibacterial, antifungal, and anti-inflammatory effects. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a highly contagious viral infection. Main proteases (M^{pro}), papain-like protease (PL^{pro}), RNA-dependent RNA polymerase (RdRp), and helicase are the main components of this virus suitable for targeting. In this way, molecular docking of neohesperidin dihydrochalcone was performed against these receptors by CB-Dock. This study showed the best binding affinity was found for neohesperidin dihydrochalcone towards helicase with a Vina score of -9.1 kcal/mol. Future investigations should be focused on *in vitro* and *in vivo* studies based on this metabolite compared to other natural and synthetic antiviral compounds.

Copyright: © 2023 by NMB.

and effective antiviral agents isolated from natural sources is the critical issue [10-13]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a contagious respiratory viral infection with common symptoms of fever, loss of taste/smell, and cough [14]. Helicase, RNA-dependent RNA polymerase (RdRp), papain-like protease (PL^{pro}), and main proteases (M^{pro}) have been found as the main components of SARS-CoV-2 [15-17]. In the present study, molecular docking of neohesperidin dihydrochalcone with helicase, RdRp, PL^{pro}, and M^{pro} of SARS-CoV-2 has been evaluated by CB-Dock as a protein-ligand docking method.

2. Materials and methods

Viral receptors were helicase (PDB code: 6ZSL, resolution: 1.94 Å), M^{pro} (PDB code: 6LU7, resolution: 2.16 Å), PL^{pro} (PDB code: 3E9S, resolution: 2.50 Å), and RdRp (PDB code: 6M71, resolution: 2.90 Å) have been extracted from protein data bank (PDB) (Figures 1a-d). The chemical structure of neohesperidin dihydrochalcone was obtained from the PubChem database and optimized

by the UCSF Chimera1.12 program (Figure 1e). CB-Dock server (<u>http://clab.labshare.cn/cb-</u> <u>dock/php/index.php</u>) was employed to evaluate the docking of neohesperidin dihydrochalcone with each receptor [18, 19].

Fig. 1. Molecular structures of a) 3E9S, b) 6LU7, c) 6M71, d) 6ZSL, and chemical structure of e) neohesperidin dihydrochalcone.

3. Results and discussion

As presented in tables 1-4, docking results of CB-Dock showed that neohesperidin dihydrochalcone can interact with helicase, RdRp, PL^{pro}, and M^{pro} by best Vina scores of -9.1, -8.3, -8.1, and -7.6 kcal/mol with cavity volumes of 2984, 724, 243, and 258 \AA^3 , respectively. Best binding affinity was found for neohesperidin dihydrochalcone -helicase by Vina score of -9.1 kcal/mol and interacting amino acids of chain B including PRO175, ASN177, ARG178, ASN179, TYR180, LEU405, PRO406, ALA407, PRO408, ARG409, THR410, LEU412, GLY415, THR416, LEU417, SER485, SER486, PRO514, TYR515, ASN516, SER517, THR532, ASP534, ALA553, HIS554, SER555, ASN557, and ARG560 (Table 1). Docking interaction of neohesperidin dihydrochalcone with the SARS-CoV-2 NSP13 helicase as the best-docked pose with related interacting amino acids has been demonstrated in

kcal/mol against M^{pro}, for epigallocatechin gallate related to green tea and theaflavin-3,3'-digallate related to black tea, respectively. In addition, theaflavin-3,3'-digallate showed binding energies of -11.3 and -6 kcal/mol towards PL^{pro} and RdRp, respectively [20]. In a comparative study, lopinavir, darunavir, amprenavir, rupintrivir, and sofosbuvir had docking scores of -9.918, -8.843, -8.655, -8.342, and -8.324 kcal/mol against M^{pro}, respectively [21]. Similarly, daclatasvir, cobicistat, remdesivir, simeprevir, and raltegravir antiviral drugs illustrated -7.2, -7.4, -7.8, -8.7, and -9.1 kcal/mol binding energies, respectively toward M^{pro} Docking interactions of 40 [22]. antiviral phytochemicals with M^{pro} were evaluated by GOLD suite and AutoDock Vina to indicate an antiviral candidate with the best binding affinities. The best

Figure 2. Docking scores were -8.3 and -8.4

binding affinity values were found for cyanidin 3glucoside, glabridin, hypericin, α-ketoamide-11r (alpha-Ketoamide inhibitor 11r), and baicalin with important interacting amino acids of His41 and Cys145 [23]. Antiviral peptides also may be employed significantly to hinder SARS CoV-2 [24-26]. Based on the Firedock score, among the 15 antiviral peptides, the lowest binding energy was found for S2P26 against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 with a value of -63.1 kcal/mol [27]. In docking study via AutoDock Vina based on a Lamarckian genetic algorithm, lopinavir-ritonavir, tipranavir, raltegravir, α-Ketoamide13b, nelfinavir, dolutegravir, tenofovirdisoproxil, baloxavir-marboxil, letermovir, and maraviroc showed binding energies of -10.6, -8.7,

-8.3, -8.3, -8.2, -8.1, -8.1, -8.1, -8.0, and -8.0 kcal/mol toward SAR-CoV-2 M^{pro}, respectively [28]. Similarly, drug-repurposing studies exhibited that raltegravir can interact with SAR-CoV-2 M^{pro} by the lowest binding energy value of -9 kcal/mol [29]. In another study, Autodock Vina and SwissDock have been utilized to dock and redock four compounds related to the genus Arthrospira including folic acid, phycourobilin, phycocyanobilin, and phycoerythrobilin against the SARS-CoV-2 spike receptor-binding domain. Based on Autodock Vina results, there were binding energies of -7, -7.1, -7.4, and -7.4 kcal/mol for folic acid, phycourobilin, phycocyanobilin, and phycoerythrobilin, respectively [30].

Table 1. CB-dock results for neohesperidin dihydrochalcone-6ZSL.

CurPocket ID	Vina score (kcal/mo l)	Cavity volume (Å ³)	Center (x, y, z)	Docking (x, y, z)	size	Contact residues
C3	-9.1	2984	-23, 20, -21	35, 28, 28		Chain B: PRO175 ASN177 ARG178 ASN179 TYR180 LEU405 PRO406 ALA407 PRO408 ARG409 THR410 LEU412 GLY415 THR416 LEU417 SER485 SER486 PRO514 TYR515 ASN516 SER517 THR532 ASP534 ALA553 HIS554 SER555 ASN557 ARG560
C1	-8.2	4329	-32, 20, -49	28, 28, 28		Chain B: LEU147 TYR185 SER191 LYS192 VAL193 GLN194 VAL226 LEU227 THR228 SER229 HIS230 THR231 Chain A: ILE334 PRO335 ALA336 ALA338 VAL340 GLU341 CYS342 ASP344 VAL348 ASN349 SER350 VAL340 GLU341 CYS342 ASP344 VAL348
C4	-8.2	2136	-16, 35, -64	28, 28, 28		ChainA:LYS139GLU142GLU143PHE145LYS146TYR149ASN179TYR180VAL181LEU227THR228CYS309SER310HIS311ARG339THR359ASN361MET378THR380TYR382ASP383ALA407PRO408ARG409THR410LEU411
C2	-7.7	3723	-11, 20, -69	28, 28, 35		ChainA:LYS139GLU142GLU143LYS146ASN179TYR180VAL181GLU197LEU227THR228CYS309SER310HIS311ARG339THR359ASN361MET378THR380TYR382ASP383PRO408THR410
C5	-7.7	2002	-32, 29, -75	28, 28, 28		Chain A: PHE145 TYR149 PRO172 ARG173 PRO174 PRO175 ASN177 ASN179 TYR180 PRO408 ARG409 THR410 LEU411 LEU412 THR413 SER485 SER486 ALA487 PRO514 TYR515 ASN516 THR532 ASP534 SER535 HIS554 ARG560

CurPocket ID	Vina score (kcal/mol)	Cavity volume (Å ³)	Center (x, y, z)	Docking siz (x, y, z)	e Contact residues
C3	-8.3	724	120, 120, 136	28, 28, 28	Chain A: ASP164 LYS551 ARG553 GLY616 TRP617 ASP618 TYR619 PRO620 LYS621 CYS622 ASP623 ASN691 SER759 ASP760 ASP761 ALA762 PHE793 MET794 SER795 LYS798 TRP800 GLU811 PHE812 CYS813 SER814 GLN815
C4	-7.7	574	146, 132, 82	28, 28, 28	Chain A: ARG33 ALA34 PHE35 ASP36 ILE37 TYR38 ASN39 VAL71 VAL72 LYS73 ASN79 ARG116 THR123 VAL204 THR206 ASP208 ASN209 TYR217 ASP218 ASP221 PHE222
C2	-7.4	775	127, 135, 127	28, 28, 28	Chain A: LEU172 THR246 LEU247 THR248 ARG249 THR252 SER318 THR319 VAL320 PHE321 PRO323 ARG349 THR394 CYS395 PHE396 TYR456 ARG457 TYR458 ASN459 LEU460 PRO461 PRO677
C1	-6.7	1089	122, 139, 100	28, 28, 28	Chain A: ARG197 SER229 GLY230 VAL231 PRO232 LEU280 LYS281 PHE283 ASP284 PHE287 LYS288 TYR289 TRP290 ASP291 GLN292 THR293 TYR294
C5	-5.4	549	121, 96, 146	28, 28, 28	Chain A: GLU431 GLY432 GLU436 LEU437 LYS438 PHE440 Chain C: LYS2 MET3 SER4 LYS7 LYS43 ASP44 THR45

Table 2. CB-dock results for neohesperidin dihydrochalcone-6M71.

Fig. 2. The best model of docking active site prepared by CB-Dock (a), the interaction of amino acids of helicase with the neohesperidin dihydrochalcone (b), and the surface around ligand of neohesperidin dihydrochalcone (c).

CurPocket ID	Vina score (kcal/mol)	Cavity volume (Å ³)	Center (x, y, z)	Docking (x, y, z)	size	Contact residues
C3	-7.6	258	-14, 11, 72	28, 28, 28		Chain A:HIS41CYS44MET49TYR54PHE140LEU141ASN142GLY143SER144CYS145HIS163HIS164MET165GLU166LEU167PRO168GLY170HIS172ASP187ARG188GLN189THR190ALA191GLN192
C1	-7.2	688	-24, 1, 56	28, 28, 28		Chain A: ARG131 LYS137 ASP197 THR198 THR199 LYS236 TYR237 ASN238 TYR239 LEU271 LEU272 GLY275 MET276 ALA285 LEU286 LEU287 GLU288 ASP289
C2	-6.9	548	-14, 34, 56	28, 28, 28		Chain A:GLU14GLY15CYS16MET17VAL18GLN19TRP31GLN69ALA70GLY71ASN72VAL73ASN95PRO96LYS97ASN119GLY120SER121PRO122
C5	-6.8	212	-34, 16, 54	28, 28, 28		Chain A: PHE8 LYS102 VAL104 ARG105 ILE106 GLN107 GLN110 THR111 ASN151 ILE152 ASP153 SER158 ASP248 ILE249 LEU250 PRO252 THR292 PRO293 PHE294 VAL297
C4	-6.7	239	-37, 5, 58	28, 28, 28		Chain A: PHE8 VAL104 ARG105 ILE106 GLN107 GLN110 THR111 ASN151 ASP153 ASP245 ILE249 LEU250 PRO252 THR292 PRO293 PHE294 VAL297

Table 3. CB-dock results for neohesperidin dihydrochalcone-6LU7.

Table 4. CB-dock results for neohesperidin dihydrochalcone-3E9S.

CurPoc ket ID	Vina score (kcal/mol)	Cavity volume (Å ³)	Center (x, y, z)	Docking size (x, y, z)	Contact residues
C3	-8.1	243	-5, 26, 15	28, 28, 28	ChainA:PRO34TYR36LEU59PRO60LEU65ARG66SER67ALA69PHE70THR75LEU76ASP77GLU78SER79PHE80LEU81GLY82ARG83
C2	-7.3	647	-28, 21, 28	28, 28, 28	Chain A: LYS158 LEU163 GLY164 ASP165 ARG167 GLU168 MET209 ALA247 PRO248 PRO249 TYR265 ASN268 TYR269 GLN270 CYS271 TYR274 THR302 ASP303
C1	-6.9	712	-8, 12, 9	28, 28, 28	Chain A: ASN14 TYR36 LEU37 ASP38 GLY39 THR55 PHE56 PHE57 LEU88 THR91 LYS92 LYS93 TRP94 LYS95 PHE96 ARG139 GLY143 ASP144 ALA145 ALA146 ASN147
C5	-6.4	203	-40, 11, 10	28, 28, 28	Chain A: GLY100 GLY101 LEU102 LEU121 GLN122 GLN123 LEU124 GLU125 VAL126 TYR137 ARG141 LEU260 THR278 ALA279 LYS280 TYR284 LYS307
C4	-5.2	212	-28, 8, 27	28, 28, 28	Chain A: LYS106 TRP107 ASN110 LEU163 THR266 GLY267 CYS271 GLY272 HIS273 ARG285 ASP287 HIS290

4. Conclusions

In silico study can provide predicting approach for designing effective antiviral compounds. Compared PL^{pro}, to M^{pro}, RdRp, and neohesperidin dihydrochalcone showed higher binding affinity toward the SARS-CoV-2 helicase. Although, the binding affinity of this compound is lower than antiviral peptides such as S2P26, the biocompatibility of neohesperidin dihydrochalcone is considerable. In a better strategy, combination treatment or novel drug design can be promising therapeutic. This molecular docking study illustrated that neohesperidin dihydrochalcone can be regarded for more therapeutic investigations, which can be employed for drug design based on chemical structure. Experimental studies including in vitro and in vivo should be regarded to better understand the antiviral activity of neohesperidin dihydrochalcone.

Study Highlights

- Neohesperidin dihydrochalcone showed higher binding affinity toward the SARS-CoV-2 helicase compared to M^{pro}, RdRp, and PL^{pro}.
- Although, the binding affinity of neohesperidin dihydrochalcone is lower than antiviral peptides such as S2P26, the biocompatibility of neohesperidin dihydrochalcone is considerable.
- Experimental studies including in vitro and in vivo should be regarded to better understand the antiviral activity of neohesperidin dihydrochalcone.

Abbreviations

ACE2: Angiotensin-converting enzyme 2 COVID-19: Coronavirus disease 2019 M^{pro}: Main proteases PL^{pro}: Papain-like protease RBD: The receptor-binding domain RdRp: RNA-dependent RNA polymerase SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2

DAA: Direct-acting antiviral agents

Funding

This work was not supported by any institutes.

Conflict of interest

Not applicable.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Author contributions

Not applicable.

Acknowledgements

Declared none.

References

1.Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, et al. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules. 2020;25(22). doi:<u>https://doi.org/10.3390/molecules25225243</u>

2.Shi X, JihaoWei, Zhang Y, Xue J, Jin Y, Li X. Exploring the mechanism of sweetener neohesperidin dihydrochalcone on oral tolerance via a network pharmacology approach combined with vivo and vitro methods. Journal of Functional Foods. 2022;95:105184.

doi:https://doi.org/10.1016/j.jff.2022.105184

3.Choi S, Yu S, Lee J, Kim W. Effects of Neohesperidin Dihydrochalcone (NHDC) on Oxidative Phosphorylation, Cytokine Production, and Lipid Deposition. Foods. 2021;10(6):1408. doi:https://doi.org/10.3390/foods10061408

4.Du L, Jiang Z, Xu L, Zhou N, Shen J, Dong Z, et al. Microfluidic reactor for lipase-catalyzed regioselective synthesis of neohesperidin ester derivatives and their antimicrobial activity research. Carbohydrate Research. 2018;455:32-8. doi:<u>https://doi.org/10.1016/j.carres.2017.11.008</u>

5.Kozłowska J, Potaniec B, Żarowska B, Anioł M. Microbial transformations of 4'-methylchalcones as an efficient method of obtaining novel alcohol and dihydrochalcone derivatives with antimicrobial activity. RSC Advances. 2018;8(53):30379-86. doi:<u>https://doi.org/10.1039/C8RA04669G</u>

6.Sage J, Renault J, Domain R, Bojarski KK, Chazeirat T, Saidi A, et al. Modulation of the expression and activity of cathepsin S in reconstructed human skin by neohesperidin dihydrochalcone. Matrix Biology. 2022;107:97-112.

doi:https://doi.org/10.1016/j.matbio.2022.02.003

7.Pizzorno A, Padey B, Terrier O, Rosa-Calatrava M. Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy. Frontiers in Immunology. 2019;10. doi:https://doi.org/10.3389/fimmu.2019.00531

8.Fabrizi F, Cerutti R, Porata G, Messa P, Ridruejo E. Direct-Acting Antiviral Agents for HCV-Associated Glomerular Disease and the Current Evidence. Pathogens. 2019;8(4):176. doi:https://doi.org/10.3390/pathogens8040176

9.Khater I, Nassar A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochemistry and Biophysics Reports. 2021;27:101032. doi:<u>https://doi.org/10.1016/j.bbrep.2021.101032</u>

10.Aljelehawy QHA, Mohammadi S, Mohamadian E, Raji Mal Allah O, Mirzaei A, Ghahremanlou M. Antimicrobial, anticancer, antidiabetic, antineurodegenerative, and antirheumatic activities of thymol: clarification of mechanisms. Micro Nano Bio Aspects. 2023;2(1):1-7.

doi:<u>https://doi.org/10.22034/mnba.2023.381107.1019</u> 11.Mirzaei A, Mohammadi MR. Anticholinergic, antimicrobial, and anticancer perspectives of atropine: a mini-review. Micro Nano Bio Aspects. 2023;2(1):39-44.

doi:https://doi.org/10.22034/mnba.2023.389924.1027

12. Aljelehawy Q, Mal Allah OR, Sourazur G. Physicochemical properties, medicinal chemistry, toxicity, and absorption of quercetin and its interaction with spike glycoprotein of SARS-CoV-2: Molecular docking. Nano Micro Biosystems. 2022;1(1):32-9. doi:https://doi.org/10.22034/nmbj.2022.163207

13.Karimi S, Heidari F, Amraei S. Therapeutic aspects of berberine and its derivatives: recent advances and challenges. Nano Micro Biosystems. 2023;2(1):42-7. doi:<u>https://doi.org/10.22034/nmbj.2023.390449.1018</u>

14.Gottlieb M, Wang RC, Yu H, Spatz ES, Montoy JCC, Rodriguez RM, et al. Severe fatigue and persistent symptoms at 3 months following severe acute respiratory syndrome coronavirus 2 infections during the pre-delta, delta, and omicron time periods: a multicenter prospective cohort study. Clinical Infectious Diseases. 2023;76(11):1930-41. doi:<u>https://doi.org/10.1093/cid/ciad045</u>

15.Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). European Journal of Pharmacology. 2021;891:173759. doi:https://doi.org/10.1016/j.ejphar.2020.173759

16.Dinda B, Dinda M, Dinda S, Chakraborty M. Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19. European Journal of Medicinal Chemistry Reports. 2022;6:100079.

doi:<u>https://doi.org/10.1016/j.ejmcr.2022.100079</u>

17.Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nature Reviews Drug Discovery. 2023;22(6):449-75.

doi:https://doi.org/10.1038/s41573-023-00672-y

18.Cao Y, Li L. Improved protein–ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics. 2014;30(12):1674-80.

doi:https://doi.org/10.1093/bioinformatics/btu104

19.Liu Y, Grimm M, Dai W-t, Hou M-c, Xiao Z-X, Cao Y. CB-Dock: a web server for cavity detectionguided protein–ligand blind docking. Acta Pharmacologica Sinica. 2020;41(1):138-44. doi:<u>https://doi.org/10.1038/s41401-019-0228-6</u>

20.Mhatre S, Naik S, Patravale V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in Biology and Medicine. 2021;129:104137. doi:https://doi.org/10.1016/j.compbiomed.2020.10413

21.Peele KA, Potla Durthi C, Srihansa T, Krupanidhi S, Ayyagari VS, Babu DJ, et al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked. 2020;19:100345. doi:<u>https://doi.org/10.1016/j.imu.2020.100345</u>

22.Ahmed S, Mahtarin R, Ahmed SS, Akter S, Islam MS, Mamun AA, et al. Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. 2021;39(16):6290-305. doi:<u>https://doi.org/10.1080/07391102.2020.1796804</u>

23.Islam R, Parves MR, Paul AS, Uddin N, Rahman MS, Mamun AA, et al. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. 2021;39(9):3213-24.

doi:https://doi.org/10.1080/07391102.2020.1761883

24.Tonk M, Růžek D, Vilcinskas A. Compelling Evidence for the Activity of Antiviral Peptides against SARS-CoV-2. Viruses. 2021;13(5). doi:<u>https://doi.org/10.3390/v13050912</u>

25.Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL. Antiviral peptides against SARS-CoV-2: therapeutic targets, mechanistic antiviral activity, and efficient delivery. Pharmacol Rep. 2022;74(6):1166-81. doi:<u>https://doi.org/10.1007/s43440-022-00432-6</u>

26.Gurung AB, Ali MA, Lee J, El-Zaidy M, Aljowaie RM, Almutairi SM. Potential of antiviral peptide-

based SARS-CoV-2 inactivators to combat COVID-19. PLOS ONE. 2022;17(6):e0268919. doi:<u>https://doi.org/10.1371/journal.pone.0268919</u> 27.Chowdhury SM, Talukder SA, Khan AM, Afrin N, Ali MA, Islam R, et al. Antiviral Peptides as Promising Therapeutics against SARS-CoV-2. The Journal of Physical Chemistry B. 2020;124(44):9785-

92. doi:https://doi.org/10.1021/acs.jpcb.0c05621

28.Kumar Y, Singh H, Patel CN. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health. 2020;13(9):1210-23. doi:https://doi.org/10.1016/j.jiph.2020.06.016

29. Indu P, Rameshkumar MR, Arunagirinathan N, Al-Dhabi NA, Valan Arasu M, Ignacimuthu S. Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach. Journal of Infection and Public Health. 2020;13(12):1856-61. doi:<u>https://doi.org/10.1016/j.jiph.2020.10.015</u>

30.Petit L, Vernès L, Cadoret J-P. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. Journal of Applied Phycology. 2021;33(3):1579-602. doi:10.1007/s10811-021-02372-9

HOW TO CITE THIS ARTICLE:

Aljelehawy QHA. Molecular docking of neohesperidin dihydrochalcone with the main components of SARS-CoV-2. Nano Micro Biosystems.2023;2(2):10-17.doi: https://doi.org/10.22034/nmbj.2023.409151.1023

CHECK FOR UPDATES